FOCALCURVATURE

FOCALCURVATURE

[image: image1.png]

[image: image2.jpg]

FOCALCURVATURE
(<input_elev_grid> <focalcurve_grid>)

FOCALCURVATURE
(<input_elev_grid> <focalcurv_grid>

{-a <ave_slope_grid>} {-na <neg_ave_grid>}

{-pa <pos_ave_grid>} {-nc <neg_count_grid>}

{-pc <pos_count_grid>})

FOCALCURVATURE
(<input_elev_grid> <focalcurve_grid>

{-a <ave_slope_grid>} {-na <neg_ave_grid>}

{-pa <pos_ave_grid>} {-nc <neg_count_grid>}

{-pc <pos_count_grid>} RECTANGLE {width} {height})

FOCALCURVATURE
(<input_elev_grid> <focalcurve_grid>

{-a <ave_slope_grid>} {-na <neg_ave_grid>}

{-pa <pos_ave_grid>} {-nc <neg_count_grid>}

{-pc <pos_count_grid>} CIRCLE {radius })

FOCALCURVATURE
(<input_elev_grid> <focalcurve_grid>

{-a <ave_slope_grid>} {-na <neg_ave_grid>}

{-pa <pos_ave_grid>} {-nc <neg_count_grid>}

{-pc <pos_count_grid>} ANNULUS {inner_radius} {outer_radius})

FOCALCURVATURE
(<input_elev_grid> <focalcurve_grid>

{-a <ave_slope_grid>} {-na <neg_ave_grid>}

{-pa <pos_ave_grid>} {-nc <neg_count_grid>}

{-pc <pos_count_grid>} WEDGE {radius} {N, S, E, W})

FOCALCURVATURE
(<input_elev_grid> <focalcurve_grid>

{-a <ave_slope_grid>} {-na <neg_ave_grid>}

{-pa <pos_ave_grid>} {-nc <neg_count_grid>}

{-pc <pos_count_grid>} IRREGULAR <kernel_file >)

FOCALCURVATURE
(<input_elev_grid> <focalcurve_grid>

{-a <ave_slope_grid>} {-na <neg_ave_grid>}

{-pa <pos_ave_grid>} {-nc <neg_count_grid>}

{-pc <pos_count_grid>} WEIGHT <kernel_file >)

For each cell location on an input grid, sum the slope values within a specified neighborhood and divides by the number of neighbor cells then sends the value to the corresponding cell location on the focalcurve grid.
__

Usages
Each usage listed above specifies a different type or shape of neighborhood in which to calculate values. The possible neighborhood shapes are the rectangle, circle, annulus, wedge, irregular and weighted irregular. Following each keyword are the necessary parameters, which further define the shape itself. If no neighborhood is specified (as is the case in the first usage), the default neighborhood is a 3 x 3 rectangle.

There are five optional output grids:

For the ave_slope_grid add the absolute slope values within a specified neighborhood and divide by the number of neighbor cells.

For the neg_ave_grid add the negative slope values within a specified neighborhood and divide by the number of negative slope values.

For the pos_ave_grid add the positive slope values within a specified neighborhood and divide by the number of positive slope values.

For the neg_count_grid count the negative slope values within a specified neighborhood.

For the pos_count_grid count the positive slope values within a specified neighborhood.

focalcurvature <input_elev_grid> <focalcurve_grid>

{-a <ave_slope_grid>}{-na <neg_ave_grid>}{-pa <pos_ave_grid>}

{-nc <neg_count_grid>}{-pc <pos_count_grid>}

{neighborhood size and shape options}

Arguments

< input_elev_grid >
an input integer or floating point grid, or an expression resulting in a grid, that identifies the values of the focal or processing cell and the values of the cells in its specified neighborhood. When no neighborhood is specified, the default neighborhood is a 3 x 3 rectangle.

< focalcurve_grid >
an output floating point grid resulting from adding the slope values within a specified neighborhood and dividing by the number of cells in the specified neighborhood minus the center cell.

{-a <ave_slope_grid>}
an output floating point grid resulting from adding the absolute slope values within a specified neighborhood and dividing by the number of cells in the specified neighborhood minus the center cell.

{-na <neg_ave_grid>}
an output floating point grid resulting from adding the negative slope values within a specified neighborhood and dividing by the number of negative slope cells in the neighborhood.

{-pa <neg_ave_grid>}
an output floating point grid resulting from adding the positive slope values within a specified neighborhood and dividing by the number of positive slope cells in the neighborhood.

{-nc <neg_count_grid>}
an output floating point grid resulting from counting the negative slope values within a specified neighborhood.

{-pc <pos_count_grid>}
an output floating point grid resulting from counting the positive slope values within a specified neighborhood.

RECTANGLE - defines the shape of a neighborhood to be a rectangle. The x, y position for the processing cell within the neighborhood, with respect to the upper-left corner of the neighborhood, is determined by the following equations:

x = (width of the neighborhood + 1)/2

y = (height of the neighborhood + 1)/2

If the input number of cells is even, the x and y coordinates are computed using truncation.

{ width }
identifies the number of cells in the grid’s x-direction that the neighborhood will encompass. If not specified, defaults to 3.

{ height }
identifies the number of cells in the grid’s y-direction that the neighborhood will encompass. If not specified, defaults to width value.

CIRCLE - defines the shape of a neighborhood to be a circle.

{ radius }
specifies the radius from the center of the processing cell that the circle or wedge neighborhood will span. The radius is identified in cells measured perpendicular to the x- or y- axis. Any cell center encompassed by the circle or wedge will be included in the processing of the neighborhood. If not specified, defaults to 2.

ANNULUS - defines the shape of a neighborhood to be an annulus. The annulus shape comprises one smaller circle within a larger circle (a donut shape). Cells that fall outside the radius of the smaller circle but inside the radius of the larger circle will be included in the processing of the neighborhood.

{ inner_radius }
specifies the radius of the inner circle of the annulus from the center of the processing cell. The radius is identified in cells measured perpendicular to the x- or y- axis. Any cell center that falls within the radius will not be included in the processing of the neighborhood. If not specified, defaults to 1.

{ outer_radius }
specifies the radius of the outer circle of the annulus from the center of the processing cell. The outer circle defines the extent of the neighborhood. The radius is identified in cells measured perpendicular to the x- or y- axis. Any cell center that falls within the radius of the outer circle but outside the radius of the inner circle will be included in the processing of the neighborhood. If not specified, defaults to 3.

WEDGE - defines the shape of a neighborhood to be a wedge. Cells that fall within the wedge will be included in the processing of the neighborhood.

The wedge shape is created by (1) specifying the radius from the center of the processing cell in cells measured perpendicular to the x or y axis and (2) identifying the quadrant of the wedge as north (N), south(S), east(E) or west(W).

{ radius } - specifies the radius from the center of the processing cell that the wedge neighborhood will span. The radius is identified in cells measured perpendicular to the x- or y- axis. Any cell center encompassed by the wedge will be included in the processing of the neighborhood. If not specified, defaults to 2.

{ N, S, E, W } - specifies the quadrant of the wedge as north (N), south (S), east (E) or west (W). If not specified, defaults to east (E).

[image: image3.wmf]N

E

S

W

IRREGULAR - allows for specifying an irregularly shaped neighborhood around the processing cell. The keyword IRREGULAR also defines the manner in which the values of the kernel file will be interpreted. The kernel file specifies which cell positions should be included within the neighborhood. The values in the kernel file should be either ‘0’ or ‘1’ (any value not equal to ‘0’ will be interpreted as ‘1’). A value of ‘0’ for a cell position indicates that the cell is not a member of the neighborhood; a value of ‘1’ for a cell position indicates that its corresponding cell (and value) is a member of the neighborhood.

< kernel_file > - defines the values and shape of an irregular neighborhood. When used with the IRREGULAR keyword any value not equal to ‘0’ will identify the cells in a neighborhood that will be used for processing.

When the keyword WEIGHT is used, the values of the cell locations within each neighborhood on the input grid will be multiplied by the values identified in the kernel file.

The kernel file is an ASCII text file in which the first line specifies the number of cells in the x-direction, followed by a space and the number of cells in the y-direction (or the width and height of the neighborhood). The subsequent lines give the values of each position in the neighborhood. The values are input in the same configuration as appears in the neighborhood they represent. A space between each value is necessary.

For a kernel file to be used with the IRREGULAR keyword, a neighborhood must be represented by 1s and 0s. The value of ‘0’ (not blank spaces) will identify the cells in a neighborhood that will not be used for processing. The center cell must have a value of 1.

5 4

1 1 1 0 0

0 1 1 1 1

0 0 1 1 1

1 1 1 0 0

When a kernel file is used with the keyword WEIGHT, the number of cells along the x and y axes (the width and height of the neighborhood) are listed on the first line. All weight values, which further define the neighborhood, are listed on subsequent lines. When processing the neighborhood of a cell on the input grid, the value at each cell position in the neighborhood is multiplied by the value of the corresponding cell position in the kernel file. The value of the center cell is multiplied by the value of the center cell in the kernel file. A ‘0’ within the kernel file is treated like any other value in the file: the value of the cell on the input grid is multiplied by zero.

6 6

3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

WEIGHT - allows for defining an irregular neighborhood and for specifying which weights will be used to multiply the cell values on an input grid. See the <kernel_file> argument for the specifications of the kernel file as it applies to the keyword WEIGHT.

Notes
· The center cell of the neighborhood is considered to be separate from other neighborhood cells in all calculations.

· Regardless of the input grid data type, resultant grid will contain floating point values.

· If the center cell is NODATA, the output cell is NODATA.

· If a neighborhood cell is NODATA, it does not contribute to the calculation of the output center cell.

· The algorithm for neighborhood processing is as follows:

Each cell of the input grid is processed using the specified neighborhood. A neighborhood cell is considered within a specified shape if the center of the neighborhood cell is within the shape.

If a center cell contains the NODATA value, the output grid cell will contain the NODATA value.

Neighbor cells which contain the NODATA value are ignored. They are not counted in the totaling of neighbor cells.

When the center cell is on the edge of the grid the neighbor cells are those which lie within the grid. Neighbor cells which would be lying off the grid are considered to contain the NODATA value.

For each neighborhood cell calculate the rise (value of center cell minus value of neighbor cell) and run (horizontal distance between the center cell and the neighbor cell).

The slope is the rise divided by the run.

When the specified neighborhood does not have a true center cell, the center cell location will be determined by dividing the even-numbered rows and/or columns by 2 (odd-numbered rows and/or columns will always have a center). Thus, for a 6x8 rectangle, the center cell will be located at column 3, row 4.

1 2 3 4 5 6

1
N N N N N N

2
N N N N N N

N = neighborhood cell

3
N N N N N N

C = center cell

4
N N C N N N

5
N N N N N N

6
N N N N N N

7
N N N N N N

8
N N N N N N

The neighborhood can be weighted using a kernel file. The center cell will be multiplied by the center value of the kernel.

Regardless of the input grid data type, the resultant grid will contain floating point values.

· The algorithm for the focalcurve grid is as follows:

Accumulate the slope values for all the cells in the neighborhood and divide by the number of neighbor cells. Place this value in the focalcurve_grid in the same location as the input cell.

· The algorithm for the ave_slope_grid is as follows:

Accumulate the absolute slope values for all the cells in the neighborhood and divide by the number of neighbor cells. Place this value in the ave_slope_grid in the same location as the input cell.

· The algorithm for the neg_ave_grid is as follows:

Accumulate the negative slope values for all the cells in the neighborhood. Divide the accumulated negative slope by the number of negative slope neighbor cells. Place this value in the neg_ave_grid in the same location as the input cell. Note that a zero slope is not considered as negative or positive.

If the number of negative slope values is zero, the neg_count_grid cell will contain zero. Otherwise all values in the neg_ave_grid will be negative.

· The algorithm for the pos_ave_grid is as follows:

Accumulate the positive slope values for all the cells in the neighborhood. Divide the accumulated positive slope by the number of positive slope neighbor cells. Place this value in the pos_ave_grid in the same location as the input cell. Note that a zero slope is not considered as negative or positive.

If the number of positive slope values is zero, the pos_ave_grid cell will contain zero.

· The algorithm for the neg_count_grid is as follows:

Count the negative slope values for all the cells in the neighborhood. Note that a zero slope is not considered as negative or positive. Place this value in the neg_count_grid in the same location as the input cell.

· The algorithm for the pos_count_grid is as follows:

Count the positive slope values for all the cells in the neighborhood. Note that a zero slope is not considered as negative or positive. Place this value in the pos_count_grid in the same location as the input cell.

Examples
· Valid uses of focalcurvature are:

Arc: focalcurvature <input DEM grid> <output focalcurvature grid>

Arc: focalcurvature <input> <output> -a <output ave. slope grid>

Arc: focalcurvature <input> <output> -pc <output positive slope grid>

Arc: focalcurvature <input> <output> rectangle 5 5

Arc: focalcurvature <input> <output> circle 8

Arc: focalcurvature <input> <output> annulus 3 7

Arc: focalcurvature <input> <output> wedge 10 s

Arc: focalcurvature <input> <output> irregular <kernel file>

Arc: focalcurvature <input> <output> weight <kernel file>

Arc: focalcurvature <input> <output> -nc <neg. count grid> -pc <pos. count grid> -pa <pos. average grid> rectangle 10 12

Examples
The Neighborhood Function on an Individual Neighborhood. (Cell width 10)

input_elevation_grid

 focalcurve_grid

input_elevation_grid

 average_slope_grid

input_elevation_grid

 negative_average_grid

input_elavation_grid

 positive_average_grid

input_elevation_grid

 negative_count_grid

input_elevation_grid

 positive_count_grid

The code for the FOCALCURVATURE program was written by Logicon Geodynamics Services, Inc. under contract with BLM National Applied Resource Sciences Center (NARSC), under the direction of and based on an algorithm developed by Jacek S. Blaszczynski, Physical Scientist, BLM NARSC in 1995-96, and published in Journal of Photogrammetric Engineering and Remote Sensing, February 1997. The software was finalized in December, 1998, under sub-contract 02845HLV5S to TRW, Inc. as part of the Bureau of Land Management Technical Support Services Contract, N652C5001, task order B814.
1

2

4

6

3

7

5

9

2

.064

1

2

4

6

3

7

5

9

2

.209

1

2

4

6

3

7

5

9

2

-.194

1

2

4

6

3

7

5

9

2

.218

1

2

4

6

3

7

5

9

2

3

1

2

4

6

3

7

5

9

2

5

PAGE
11

_975132120.doc
[image: image1.png]

_975051110.doc
[image: image1.wmf]N

E

S

W

�

